FINAL JEE-MAIN EXAMINATION - SEPTEMBER, 2020

(Held On Friday 04th SEPTEMBER, 2020) TIME: 3 PM to 6 PM

CHEMISTRY

TEST PAPER WITH ANSWER & SOLUTION

- 1. If the equilibrium constant for $A \rightleftharpoons B+C$ is $K_{eq}^{(1)}$ and that of $B+C \rightleftharpoons P$ is $K_{eq}^{(2)}$, the equilibrium constant for $A \rightleftharpoons P$ is :-
 - $(1) \ \ K_{eq}^{(2)} K_{eq}^{(1)} \qquad \qquad (2) \ \ K_{eq}^{(1)} K_{eq}^{(2)}$
 - (3) $K_{eq}^{(1)}/K_{eq}^{(2)}$ (4) $K_{eq}^{(1)}+K_{eq}^{(2)}$

Official Ans. by NTA (2)

- **Sol.** $A \rightleftharpoons B + C$ $K_{eq}^{(1)} = \frac{[B][C]}{[A]}$(1)
 - $B+C \rightleftharpoons P \quad K_{eq}^{(2)} = \frac{[P]}{[B][C]}$

For

$$A \rightleftharpoons P \quad K_{eq} = \frac{[P]}{[A]}$$

Multiplying equation (1) & (2)

$$K_{eq}^{(1)} \times K_{eq}^{(2)} = \frac{[P]}{[A]} = K_{eq}$$

- 2. Five moles of an ideal gas at 1 bar and 298 K is expanded into vacuum to double the volume. The work done is:-

 - (1) $C_v(T_2 T_1)$ (2) $-RT \ln V_2/V_1$
 - (3) $-RT(V_2 V_1)$ (4) zero

Official Ans. by NTA (4)

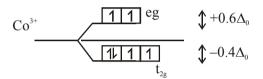
As the expansion is done in vaccum that is in absence of p_{ext} so

W = zero

- The process that is NOT endothermic in nature **3.** is :-
 - (1) $Ar_{(g)} + e^{-} \rightarrow Ar_{(g)}^{-}$ (2) $H_{(g)} + e^{-} \rightarrow H_{(g)}^{-}$
- - (3) $Na_{(g)} \rightarrow Na_{(g)}^+ + e^-$ (4) $O_{(g)}^- + e^- \rightarrow O_{(g)}^{2-}$

Official Ans. by NTA (2)

Sol. $H_{(g)} + e^- \rightarrow H^-$ is exothermic rest of all endothermic process.


- 4. The crystal Field stabilization Energy (CFSE) of $[CoF_3(H_2O)_3](\Delta_0 \le P)$ is :-
 - (1) $-0.8 \Delta_0$
- (2) $-0.4 \Delta_0 + P$
- $(3) -0.8 \Delta_0 + 2P$
 - $(4) -0.4 \Delta_0$

Official Ans. by NTA (4)

Official Ans. by ALLEN (2, 4)

Sol. $[CoF_3(H_2O)_3]$ $\Delta_0 < P$

Means all ligands behaves as weak field ligands

- $= \left[-0.4 \times 4 + 0.6 \times 2\right] \Delta_0$
- $= [-1.6 + 1.2]\Delta_0$
- $= [-0.4\Delta_0]$
- The mechanism of action of "Terfenadine" (Seldane) is :-
 - (1) Activates the histamine receptor
 - (2) Inhibits the secretion of histamine
 - (3) Inhibits the action of histamine receptor
 - (4) Helps in the secretion of histamine

Official Ans. by NTA (3)

- Seldane is an antihistamine drugs it inhibits the action of histamine receptor.
- 6. An alkaline earth metal 'M' readily forms water soluble sulphate and water insoluble hydroxide. Its oxide MO is very stable to heat and does not have rock-salt structure. M is :-
 - (1) Ca
- (2) Be
- (3) Mg
- (4) Sr

Official Ans. by NTA (2)

Sol. [Be]

BeSO₄ is water soluble

Be(OH)₂ is water insoluble

BeO is stable to heat

VIDYAPEETH ACADEMY

Final JEE -Main Exam September, 2020/04-09-2020/Evening Session

- 7. The reaction in which the hybridisation of the underlined atom is affected is:-
 - (1) $NH_3 \xrightarrow{H^+}$
 - (2) $XeF_4 + SbF_5 \rightarrow$
 - (3) $H_2SO_4 + NaCl \xrightarrow{420 \text{ K}}$
 - (4) $H_3\underline{P}O_2$ Disproportionation \rightarrow

Official Ans. by NTA (2)

- **Sol.** $XeF_4 + SbF_5 \rightarrow [XeF_3]^+[SbF_6]^$ $sp^3d^2 sp^3d sp^3d sp^3d^2$
- 8. The one that can exhibit highest paramagnetic behaviour among the following is:gly = glycinato; bpy = 2, 2'-bipyridine
 - (1) $[Pd(gly)_2]$
 - (2) $[Ti(NH_3)_6]^{3+}$
 - (3) $[Co(OX)_2(OH)_2]^- (\Delta_0 > P)$
 - (4) $[Fe(en)(bpy)(NH_3)_2]^{2+}$

Official Ans. by NTA (3)

Sol. $[Co(OX)_2(OH)_2]^ \Delta_0 > P$ [S.F.L]

$$Co = 3d^{7} 4s^{2}$$

$$Co^{+5} = 3d^{4} 4s^{0}$$

It has highest number of unpaired e-s. so it is most paramagnetic.

9. In the following reaction sequence, [C] is :-

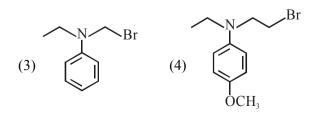
$$\begin{array}{c}
NH_2 \\
(i) NaNO_2 + HCl, 0-5 ^{\circ}C \\
(ii) Cu_2Cl_2 + HCl
\end{array}$$

$$\begin{array}{c}
CH_3
\end{array}$$

$$\frac{\frac{Cl_2}{hv} > [B] \xrightarrow{Na+dry \text{ ether}} [C]}{(Major Product)}$$

(3)
$$CI \longrightarrow CH_2 - CH_2 \longrightarrow CI$$

Official Ans. by NTA (3)


Sol.
$$(i) \text{ NaNO}_2 + \text{HCl} \longrightarrow (i) \text{ NaNO}_2 + \text{HCl} \longrightarrow (ii) \text{ Cu}_2\text{Cl}_2 + \text{HCl} \longrightarrow (CH_3) \longrightarrow (CH_2 - CI) \longrightarrow$$

- 10. A sample of red ink (a colloidal suspension) is prepared by mixing eosin dye, egg white, HCHO and water. The component which ensures stability of the ink sample is:-
 - (1) HCHO
- (2) Eosin dye
- (3) Egg white
- (4) Water

Official Ans. by NTA (3)

- 11. The processes of calcination and roasting in metallurgical industries, respectively, can lead to :-
 - (1) Global warming and acid rain
 - (2) Photochemical smog and ozone layer depletion
 - (3) Global warming and photochemical smog
 - (4) Photochemical smog and global warming Official Ans. by NTA (1)
- **Sol.** Due to industrial process SO₂ gas is released which is responsible for acid rain & global warming.
- **12.** Which of the following compounds will form the precipitate with aq. AgNO₃ solution most readily?

$$(1) \bigcirc \bigcirc \bigcirc Br \qquad (2) \bigcirc \bigcirc \bigcirc$$

Official Ans. by NTA (2)

VIDYAPEETH Final JEE -Main Exam September, 2020/04-09-2020/Evening Session

Sol.
$$R - x + aq.AgNO_3 \xrightarrow{R.D.S} R^{\oplus} + Agx_{(PPT)}$$
 (1)

So rate of P.P.T formation of Agx depend's on stability of carbocation (R⁺)

In given question formed carbocation will be

$$(a) \qquad (b) \qquad (c) \qquad (d) \qquad (d)$$

Most stable carbocation is (b) so

- 13. The molecule in which hybrid MOs involve only one d-orbital of the central atom is :-
 - (1) $[Ni(CN)_4]^{2-}$
- (2) $[CrF_6]^{3-}$
- (3) BrF₅
- (4) XeF₄

Official Ans. by NTA (1)

Sol. $[Ni(CN)_4]^{2-}$ dsp² hybridisation.

14. Among the following compounds, which one has the shortest C-Cl bond?

$$(2) \xrightarrow{\text{H}_3\text{C}} \text{Cl}$$

Official Ans. by NTA (3)

In option (3) C—Cl bond is shortest due to resonance of lone pair of -Cl.

Due to resonance C—Cl bond acquire partial double bond character.

Hence C—Cl bond length is least.

15. The major product [R] in the following sequence of reactions is :-

HC=CH
$$\xrightarrow{\text{(i) LiNH}_2/\text{ether}}$$
 [P]

$$\frac{\text{(i) } HgSO_4/H_2SO_4}{\text{(ii) } NaBH_4} \rightarrow [Q] \xrightarrow{Conc.H_2SO_4} \rightarrow [R]$$

(2)
$$H_3C$$
 $C=C(CH_3)_2$ H_3CCH_2

(4)
$$\begin{array}{c} H_3C\\ CH-CH=CH_2\\ (CH_3)_2CH \end{array}$$

Official Ans. by NTA (2)

Now:-(i) HgSO₄/dil.H₂SO₄

(ii) NaBH₄

is convert triple bond into ketone and formed ketone is reduced by NaBH₄ and convert into Alcohol.

- The incorrect statement(s) among (a) (c) is 16. (are) :-
 - (a) W(VI) is more stable than Cr(VI).
 - (b) in the presence of HCl, permanganate titrations provide satisfactory results.
 - (c) some lanthanoid oxides can be used as phosphors.
 - (1) (a) and (b) only
- (2) (a) only
- (3) (b) and (c) only
- (4) (b) only

Official Ans. by NTA (4)

- KMnO₄ will not give satisfactory result when Sol. it is titrated by HCl.
- **17.** 250 mL of a waste solution obtained from the workshop of a goldsmith contains 0.1 M AgNO₃ and 0.1 M AuCl. The solution was electrolyzed at 2 V by passing a current of 1 A for 15 minutes. The metal/metals electrodeposited will be :-

$$\left(E^0_{Ag^+/Ag} = 0.80V, \; E^0_{Au^+/Au} = 1.69V\right)$$

- (1) only silver
- (2) only gold
- (3) silver and gold in equal mass proportion
- (4) silver and gold in proportion to their atomic weights

Official Ans. by NTA (4)

As voltage is '2V' so both Ag+ & Au+ will Sol. reduce and their equal gm equivalent will reduce so

gmeq Ag = gmeq of Au

$$\frac{Wt_{_{Ag}}}{E_{_{qwt_{_{Ag}}}}} = \frac{Wt_{_{Au}}}{E_{_{qwt_{_{Au}}}}}$$

$$So \quad \frac{wt_{Ag}}{wt_{Au}} = \frac{E_{qwt_{Ag}}}{E_{qwt_{Au}}} = \frac{At \ wt_{Ag}}{Atwt_{Au}}$$

The major product [B] in the following reactions **18.**

$$\begin{matrix} CH_3 \\ I \\ CH_3-CH_2-CH_-CH_2-OCH_2-CH_3 \end{matrix}$$

$$\frac{\text{HI}}{\text{Heat}} \blacktriangleright [A] \text{ alcohol } \frac{\text{H}_{2}\text{SO}_{4}}{\Delta} \blacktriangleright [B]$$

$$CH_{3}$$

$$(1) CH_{3}-CH_{2}-C=CH_{2}$$

- (2) $CH_3-CH_2-CH=CH-CH_3$
- (3) CH₂=CH₂

Official Ans. by NTA (4)

19. The major product [C] of the following reaction sequence will be :-

$$CH_2 = CH - CHO \xrightarrow{(i) \text{ NaBH}_4} [A] \xrightarrow[\text{Alcl}_4]{} [B]$$

$$(1) \bigcirc Br D$$

Official Ans. by NTA (3)

Sol.
$$CH_2=CH-C-H$$
 $\xrightarrow{(i) \text{ NaBH}_4}$ $CH_2=CH-CH_2-CI$

$$(A)$$

$$\downarrow \bigcirc +AICI_3$$

$$CH_2-CH=CH_2$$

$$CH_2-CH=CH_2$$

$$CH_2-CH=CH_2$$

20. The shortest wavelength of H atom is the Lyman series is λ_1 . The longest wavelength in the Balmer series of He⁺ is :-

$$(1) \ \frac{5\lambda_1}{9}$$

$$(2) \ \frac{27\lambda_1}{5}$$

$$(3) \ \frac{9\lambda_1}{5}$$

$$(4) \ \frac{36\lambda_1}{5}$$

Official Ans. by NTA (3)

Sol. As we know $\Delta E = \frac{hc}{\lambda}$

So
$$\lambda = \frac{hc}{\Delta E}$$

for λ minimum i.e.

shortest; $\Delta E = maximum$

for Lyman series n = 1 & for ΔE_{max}

Transition must be form $n = \infty$ to n = 1

$$S_0 \qquad \frac{1}{\lambda} = R_H Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$\frac{1}{\lambda} = R_{\rm H} Z^2 \left(1 - 0 \right)$$

$$\frac{1}{\lambda} = \mathbf{R} \times (1)^2 \Longrightarrow \lambda_1 = \frac{1}{\mathbf{R}}$$

For longest wavelength ΔE = minimum for Balmer series n = 3 to n = 2 will have ΔE minimum

for $He^+Z=2$

So
$$\frac{1}{\lambda_2} = R_H \times Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$\frac{1}{\lambda_2} = R_H \times 4 \left(\frac{1}{4} - \frac{1}{9} \right)$$

$$\frac{1}{\lambda_2} = R_H \times \frac{5}{9}$$

$$\lambda_2 = \lambda_1 \times \frac{9}{5}$$

21. A 100 mL solution was made by adding 1.43 g of Na₂CO₃·xH₂O. The normality of the solution is 0.1 N. The value of x is

(The atomic mass of Na is 23g/mol) :-

Official Ans. by NTA (10)

Sol. Molar mass of Na₂CO₃·xH₂O

$$\Rightarrow$$
 23 × 2 + 12 + 48 + 18x

$$\Rightarrow$$
 46 + 12 + 48 + 18x

$$\Rightarrow (106 + 18x)$$

Eqwt =
$$\frac{M}{2}$$
 = (53 + 9x)

As n_{factor} in dissolution will be determined from net cationic or anionic charge; which is 2 so

$$Eqwt = \frac{M}{2} = 53 + 9x$$

$$Gmeq = \frac{wt}{Eqwt} = \frac{1.43}{53 + 9x}$$

Normality =
$$\frac{Gmeq}{V_{litre}}$$

Normality =
$$0.1 = \frac{1.43}{\frac{53 + 9x}{0.1}}$$

As volume = 100 ml

$$= 0.1$$
 Litre

So
$$10^{-2} = \frac{1.43}{53 + 9x}$$

$$53 + 9x = 143$$

$$9x = 90$$

$$x = 10.00$$

22. The osmotic pressure of a solution of NaCl is 0.10 atm and that of a glucose solution is 0.20 atm. The osmotic pressure of a solution formed by mixing 1 L of the sodium chloride solution with 2 L of the glucose solution is $x \times 10^{-3}$ atm. x is _____. (nearest integer) :-

Official Ans. by NTA (167)

Sol. Osmotic pressure = $\pi = i \times C \times RT$

For NaCl i = 2 so

$$\pi_{\text{NaCl}} = i \times C_{\text{NaCl}} \times \text{RT}$$
 $C_{\text{NaCl}} = \text{conc. of NaCl}$

$$0.1 = 2 \times C_{\text{NaCl}} \times \text{RT}$$

$$C_{\text{NaCl}} = \frac{0.05}{RT}$$

For glucose i = 1 so

$$\pi_{\text{Glucose}} = i \times C_{\text{glucose}} \times RT$$

$$0.2 = 1 \times C_{\text{glucose}} \times RT$$

$$C_{Glucose} = \frac{0.2}{RT}$$
 $\eta_{NaCl} = No. \text{ of moles NaCl}$

 η_{NaCl} in 1 L = $C_{NaCl} \times V_{Litre}$

$$= \frac{0.05}{RT} \quad \eta_{glucose} = \text{No. of moles glucose}$$

$$\eta_{glucose}$$
 in 2 L = $C_{glucose} \times V_{Litre}$

$$= \frac{0.4}{RT}$$

$$V_{Total} = 1 + 2 = 3L$$

so Final conc. NaCl =
$$\frac{0.05}{3RT}$$

Final conc. glucose =
$$\frac{0.4}{3RT}$$

$$\pi_{Total} = \pi_{NaCl} + \pi_{glucose}$$

$$= \left[i \times C_{\text{NaCl}} + C_{\text{glucose}}\right] \times RT$$

$$= \left(\frac{2 \times 0.05}{3RT} + \frac{0.4}{3RT}\right) \times RT$$

$$=\frac{0.5}{3}$$
atm

= 0.1666 atm

 $= 166.6 \times 10^{-3}$ atm

 \Rightarrow 167.00 × 10⁻³ atm

so x = 167.00

23. The number of chiral centres present in threonine is

Official Ans. by NTA (2)

Sol. Structure of Threonine is:

- S. 2-chiral center is present
- **24.** Consider the following equations:

$$2 \text{ Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{x A + y B}$$

(in basic medium)

$$2MnO_4^- + 6H^+ + 5H_2O_2 \rightarrow x'C + y'D + z'E$$

(in acidic medium)

The sum of the stoichiometric coefficients

x, y, x', y' and z' for products A, B, C, D and

E, respectively, is _____.

Official Ans. by NTA (19)

Sol.
$$\left[\operatorname{Fe}^{2+} \to \operatorname{Fe}^{3+} + \operatorname{e}^{-} \right] \times 2$$

$$\frac{H_2O_2 + 2e^- \to 2HO^{\odot}}{2Fe^{2+} + H_2O_2 \to 2Fe^{3+} + 2HO^{\odot}_{(qeo)}}$$

$$x = 2 \qquad y = 2$$

$$[8H^{+} + MnO_{4}^{-} + 5e^{-} \rightarrow Mn^{2+} + 4H_{2}O] \times 2$$

$$\left[H_2O_2 \rightarrow O_{2(g)} + 2H^+ + 2e^- \right] \times 5$$

$$\Rightarrow 16H^+ + 2MnO_4^- + 5H_2O_2$$

$$\rightarrow 2Mn^{2+} + 8H_2O + 5O_{2(g)} + 10H^+$$

$$\Rightarrow$$
 6H⁺ + 2MnO₄⁻ + 5H₂O₂

$$\rightarrow 2Mn^{2+} + 8H_2O + 5O_{2(9)}$$

So
$$x' = 2$$
 $y' = 8$ $z' = 5$

so
$$x + y + x' + y' + z'$$

$$\Rightarrow$$
 2 + 2 + 2 + 8 + 5

The number of molecules with energy greater than the threshold energy for a reaction increases five fold by a rise of temperature from 27 °C to 42 °C. Its energy of activation in J/mol is ______. (Take ln 5 = 1.6094; R = 8.314 J mol⁻¹K⁻¹)

Official Ans. by NTA (84297)

Official Ans. by ALLEN (84297.47 or 84297.48)

Sol. $T_1 = 300K$ $T_2 = 315K$

As per question $K_{T_2} = 5K_{T_1}$ as molecules activated are increased five times so k will increases 5 times

Now

$$\ln\!\left(\frac{K_{T_2}}{K_{T_1}}\right) = \frac{Ea}{R}\!\left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

$$\ln 5 = \frac{\text{Ea}}{R} \left(\frac{15}{300 \times 315} \right)$$

So Ea =
$$\frac{1.6094 \times 8.314 \times 300 \times 315}{15}$$

Ea = 84297.47 Joules/mole