

1

VIDYAPEETH Final JEE-Main Exam September, 2020/03-09-2020/Morning Session

- In a molecule of pyrophosphoric acid, the number of P-OH, P=O and P-O-P bonds/ moiety(ies) respectivey are :
 - (1) 3, 3 and 3 (2) 2, 4 and 1
 - (3) 4, 2 and 0 (4) 4, 2 and 1
 - Official Ans. by NTA (4)
- Sol. Pyrophosphoric acid.

- P OH linkages = 4
- P = O linkages = 2
- P-O-P linkages = 1
- 5. It is true that :
 - (1) A zero order reaction is a single step reaction
 - (2) A second order reaction is always a multistep reaction
 - (3) A first order reaction is always a single step reaction
 - (4) A zero order reaction is a multistep reactionOfficial Ans. by NTA (4)
- Sol. Zero order reaction is multiple step reaction.
- 6. Which of the following compounds produces an optically inactive compound on hydrogenation ?

7. Henry's constant (in kbar) for four gases α , β , γ and δ in water at 298 K is given below :

(density of water = 10^3 kg m⁻³ at 298 K) This table implies that :

- (1) The pressure of a 55.5 molal solution of γ is 1 bar
- (2) The pressure of a 55.5 molal solution of δ is 250 bar
- (3) Solubility of γ at 308 K is lower than at 298 K
- (4) α has the highest solubility in water at a given pressure

Official Ans. by NTA (2)

Sol. (1)
$$P_{\gamma} = K_H X_Y$$

8.

$$P_{\gamma} = 2 \times 10^{-15} \times \frac{55.5}{55.5 + \frac{1000}{18}} = 2 \times 10^{-5} \text{ K bar}$$
$$= 2 \times 10^{-2} \text{ bar}$$

2)
$$P_{\delta} = K_H X_{\delta}$$

$$P_{\delta} = 0.5 \times \frac{55.5}{55.5 + \frac{1000}{18}} = .249 \text{ K bar} = 249 \text{ bar}$$

(3) On increasing temperature solubility of gases decreases

(4) $K_H \downarrow$ solubility \uparrow and lowest K_H is for γ . Tyndall effect of observed when :

- (1) The diameter of dispersed particles is much smaller than the wavelength of light used
- (2) The diameter of dispersed particles is much larger than the wavelength of light used
- (3) The diameter of dispersed particles is similar to the wavelength of light used
- (4) The refractive index of dispersed phase is greater than that of the dispersion medium

Official Ans. by NTA (3)

Sol. The diameter of disperseed particles is similar to wavelength of light used.

APEETH N Final JEE-Main Exam September, 2020/03-09-2020/Morning Session

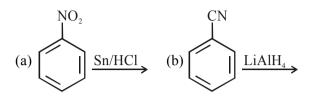
- 9. Thermal power plants can lead to :(1) Ozone layer depletion
 - (2) Eutrophication
 - (3) Acid rain
 - (4) Blue baby syndrome

Official Ans. by NTA (3)

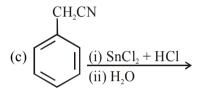
- Sol. Thermal power plants lead to acid rain.
- 10. The electronic spectrum of [Ti(H₂O)₆]³⁺ shows a single broad peak with a maximum at 20,300 cm⁻¹. The crystal field stabilization energy (CFSE) of the complex ion, in kJ mol⁻¹, is :
 - (1) 242.5
 - (2) 83.7
 - (3) 145.5
 - (4) 97

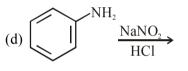
Official Ans. by NTA (4)

Sol. CFSE = 0.4 Δ_0


$$= 0.4 \times \frac{20300}{83.7}$$

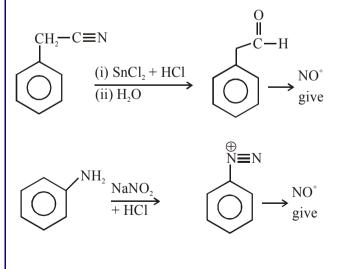
= 97 kJ/mol


- Aqua regia is used for dissolving noble metals (Au, Pt, etc). The gas evolved in this process is :
 - (1) N₂
 - (2) N_2O_3
 - (3) NO
 - (4) N_2O_5


Official Ans. by NTA (3)

Sol. Au + HNO₃ + 4HCl \rightarrow HAuCl₄ + NO + 2H₂O

12. The Kjeldahl method of Nitrogen estimation fails for which of the following reaction products ?



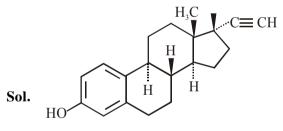
- (1) a and d (2) c and d
- (3) a, c and d (4) b and c

Official Ans. by NTA (2)

Sol. Kjeldahl method is used for N estimation But not given by 'Diazo' compounds

	APEETH Final JEE - Main Exam So	eptem	ber, 2020/03-09-2020/Morning Session
13.	The mechanism of S_N^1 reaction is given as :	15.	Glycerol is separated in soap industries by :
	9		(1) Steam distillation
	$\begin{array}{c} R - X \rightarrow R^{\oplus} X^{\ominus} \rightarrow R^{\oplus} X^{\ominus} \xrightarrow{Y^{\Theta}} R - Y + X^{\Theta} \\ Ion & Solvent \\ pair & separated ion \end{array}$		(2) Differential extraction
			(3) Distillation under reduced pressure
	pair		(4) Fractional distillation
	A student writes general characteristics based		Official Ans. by NTA (3)
	on the given mechanism as :	Sol.	Glycerol is separated by reduced pressure
	(a) The reaction is favoured by weak nucleophiles	16.	distillation in soap industries. Of the species, NO, NO ⁺ , NO ²⁺ , NO ⁻ , the one
	(b) R^{\oplus} would be easily formed if the substituents	100	with minimum bond strength is :
	are bulky		(1) NO ²⁺ (2) NO ⁺ (3) NO (4) NO ⁻
	(c) The reaction is accompained by recemization		Official Ans. by NTA (4)
	(d) The reaction is favoured by non-polar	Sol.	Bond order of $NO^{2+} = 2.5$
	solvents.		Bond order of $NO^+ = 3$
	Which observations are correct ?		Bond order of NO = 2.5 Bond order of NO- = 2
	(1) b and d (2) a and c		Bond order α bond strength.
	(3) a, b and c (4) a and b	17.	The atomic number of the element unnilennium
	Official Ans. by NTA (2)		is :
Sol.	 S_N¹ favours (a) The reaction is favoured by weak nucleophiles 		(1) 119 (2) 108 (3) 102 (4) 109
	(a) The reaction is favoured by weak nucleophiles (b) R^{\oplus} would be easily formed if the substituents		Official Ans. by NTA (4)
	are bulky	Sol.	1 0 9
14	(c) The reaction is accompained by recemization		un nil enn Hence correct name → unnilennium
14.	Which one of the following compounds possesses the most acidic hydrogen ?	18.	An acidic buffer is obtained on mixing :
	N≡C, C≡N		(1) 100 mL of 0.1 M CH ₃ COOH and 200 mL
	(1) $H_{\rm H} = 0.0000000000000000000000000000000000$		of 0.1 M NaOH
			(2) 100 mL of 0.1 M CH ₃ COOH and 100 mL
			of 0.1 M NaOH
	$(3) H_{3}C CH_{3} (4) MeO H OMe OMe$		(3) 100 mL of 0.1 M HCl and 200 mL of 0.1 M CH ₃ COONa
	Official Ans. by NTA (4)		(4) 100 mL of 0.1 M HCl and 200 mL of 0.1 M NaCl
a 1	O $\sqrt{\Omega}$ Most acidic H		Official Ans. by NTA (3)
Sol.	$m_{e}O - C \downarrow C - Om_{e}$		HCl + CH ₃ COONa \rightarrow CH ₃ COOH+ NaCl
		Sol.	10 mili mol 20 mili mol — — — — — — — — — — — — — — — — — — —
	Ċ—Om _e		So finaly we get mixture of
	U		$CH_3COOH + CH_3COONa$ that will work like
	Due to presence of 3 (-R) groups		acidic buffer solution.
4			

VIDYAPEETH Final JEE-Main Exam September, 2020/03-09-2020/Morning Session


- 19. Let C_{NaCl} and C_{BaSO4} be the conductances (in S) measured for saturated aqueous solutions of NaCl and BaSO4, respectively, at a temperature T. Which of the following is false ?
 - (1) Ionic mobilities of ions from both salts increase with T
 - (2) $C_{\text{NaCl}} >> C_{\text{BaSO}_4}$ at a given T
 - (3) $C_{\text{NaCl}}(T_2) > C_{\text{NaCl}}(T_1)$ for $T_2 > T_1$
 - (4) $C_{BaSO_4}(T_2) > C_{BaSO_4}(T_1)$ for $T_2 > T_1$ Official Ans. by NTA (3)

Official Alis. by NTA (5)

Official Ans. by ALLEN (Bonus)

- Sol. Dissolution of $BaSO_4$ is an endothermic reaction 50 on increasing temperature number of ions of $BaSO_4$ decrease so it's conduction also decrease.
- **20.** The antifertility drug 'Novestrol" can react with :
 - (1) Br₂/water; ZnCl₂/HCl; FeCl₃
 - (2) Alcoholic HCN; NaOCl; ZnCl₂/HCl
 - (3) Br₂/water; ZnCl₂/HCl; NaOCl
 - (4) ZnCl₂/HCl; FeCl₃; Alcoholic HCN

Official Ans. by NTA (1)

Ethynylestradiol (novestrol)

gives (1) $Br_2 + H_2O$ test

- (2) Lucas test with $ZnCl_2 + HCl$
- (3) $FeCl_3$ test of phenolic group.
- 21. The volume strength of 8.9 M H₂O₂ solution calculated at 273 K and 1 atm is _____. (R=0.0821 L atm K⁻¹ mol⁻¹) (rounded off to the nearest integer)

Official Ans. by NTA (100)

Sol. Volume strength of H_2O_2 at 1 atm 273 kelvin = M × 11.2 = 8.9 × 11.2 = 99.68 Ans : 100 22. The mole fraction of glucose $(C_6H_{12}O_6)$ in an aqueous binary solution is 0.1. The mass percentage of water in it, to the nearest integer, is

Official Ans. by NTA (47)

Sol. $X_{C_6H_{12}O_6} = 0.1$ Let total mole is 1 mol then mole of glucose will be 0.1 and mole of water will be 0.9

so mass % of water =
$$\frac{0.9 \times 18}{0.1 \times 180 + 0.9 \times 18} \times 100$$

= 47.36

Ans : 47

23. The photoelectric current from Na (work function, w₀ = 2.3 eV) is stopped by the output voltage of the cell Pt(s)|H₂(g, 1bar)|HCl(aq., pH = 1)|AgCl(s)|Ag(s) The pH of aq. HCl required to stop the photoelectric current from K(w₀ = 2.25eV), all other conditions remaining the same, is ______ × 10⁻² (to the nearest integer).

Given, $2.303 \frac{\text{RT}}{\text{F}} = 0.06 \text{V}; \text{E}^{0}_{\text{AgCl}|\text{Ag}|\text{Cl}^{-}} = 0.22 \text{V}$ Official Ans. by NTA (58) Official Ans. by ALLEN (142)

Sol.
$$\frac{1}{2}H_2 \rightarrow H^+ + e^{\Theta}$$
$$\frac{e^{\Theta} + AgCl_{(s)} \rightarrow Ag_{(s)} + Cl^{\Theta}}{\frac{1}{2}H_2 + AgCl_{(s)} \rightarrow H^+_{(aq)} + Ag_{(s)} + Cl^{\Theta}_{(aq)}}$$

$$\mathbf{E} = \varepsilon^{0} - \frac{.06}{1} \log \frac{\left[\mathbf{H}^{+}\right] \left[\mathbf{Cl}^{\Theta}\right]}{\mathbf{P}_{\mathrm{H}_{2}}^{\frac{1}{2}}}$$

E = 0.22 - .06 log
$$\frac{(10^{-1})(10^{-1})}{1^{\frac{1}{2}}}$$

E = 0.22 + .12 = .34 volt $\Rightarrow \text{ total energy of photon will be (for Na)}$ = 2.3 + 0.34 = 2.64 eV

Final JEE - Main Exam September, 2020/03-09-2020/Morning Session

٦

 \Rightarrow stopping potential required for K

$$= 2.64 - 2.25 = 0.39$$
 volt

$$E = \varepsilon^{0} - \frac{.06}{1} \log \frac{\left[H^{+}\right] \left[Cl^{-}\right]}{P_{H_{2}}^{\frac{1}{2}}}$$

as
$$[H^+] = [Cl^{\odot}]$$
 so

VIDYAPEETH

$$0.39 = 0.22 - .06 \log \frac{\left[H^+\right]^2}{1^{\frac{1}{2}}}$$

$$0.17 = + .12 \text{ pH}$$

 $\text{pH} = 1.4166 \implies 1.42$

24. An element with molar mass 2.7×10^{-2} kgmol⁻¹ forms a cubic unit cell with edge length 405 pm. If its density is 2.7×10^3 kgm⁻³, the radius of the element is approximately _____ × 10^{-12} m (to the nearest integer).

Official Ans. by NTA (143)

Sol.
$$d = \frac{z\left(\frac{M}{N_A}\right)}{a^3}$$

$$2.7 \times 10^{3} = z \frac{\left(\frac{2.7 \times 10^{-2}}{6 \times 10^{23}}\right)}{\left(405 \times 10^{-12}\right)^{3}}$$

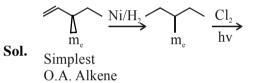
$$2.7 \times 10^{3} = z \frac{\left(2.7 \times 10^{-2}\right)}{6 \times 10^{23} \left(4.05 \times 10^{-10}\right)^{3}}$$

$$2.7 \times 10^{3} = z \frac{\left(2.7 \times 10^{-2}\right)}{6 \times 10^{23} \times 66.43 \times 10^{-30}}$$

3.98 = z

 $z \approx 4$ structure is fcc

$$\frac{a}{\sqrt{2}} = 2r$$

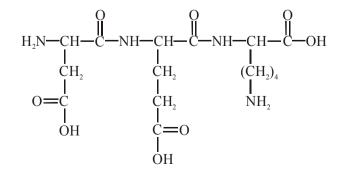

$$\mathbf{r} = \frac{\mathbf{a}}{2\sqrt{2}} = \frac{\sqrt{2}\mathbf{a}}{4} = \frac{1.414 \times 405 \times 10^{-12}}{4}$$

 $r = 143.16 \times 10^{-12}$

25. The total number of monohalogenated organic products in the following (including stereoisomers) reaction is _____.

$$\begin{array}{c} A \\ (simplest optically \\ active alkene) \end{array} \xrightarrow{(i)H_2/Ni/\Delta} \\ \hline \\ \hline \\ (ii)X_2/\Delta \end{array}$$

Official Ans. by NTA (8)



Alter

Str. of Tri peptide

